Knowledge Repository

 

Document details

Title

Adaptive attribute selection for configurator design

Author

Yue Wang and Mitchell Tseng

Uploaded by

Yue Wang on 9/16/2013

Status

published

Category

Academic Papers

Industry

No specific industry

Content Focus

Company related – choice navigation

Keywords

configurator, mass customization, Shapley Value

Abstract

Configurators have been generally accepted as important tools to elicit customers’ needs and find the matches between customers’ requirements and company’s offerings. With product configurators, product design is reduced to a series of selections of attribute values. However, it has been acknowledged that customers are not patient enough to configure a long list of attributes. Therefore, making every round of configuring process productive and hence reducing the number of inputs from customers are of substantial interest to academic and industry alike. In this paper, we present an efficient product configuration approach by incorporating Shapley value, which is a concept used in game theory, to estimate the usefulness of each attribute in the configurator design. This new method iteratively selects the most relevant attribute that can contribute most in terms of information content from the remaining pool of unspecified attributes. As a result from product providers’ perspective, each round of configuration can best narrow down the choices with given amount of time. The selection of the next round query is based on the customer’s decision on the previous rounds. The interactive process thus runs in an adaptive manner that different customers will have different query sequences. The probability ranking principle is also exploited to give product recommendation to truncate the configuration process so that customers will not be burdened with trivial selection of attributes. Analytical results and numerical examples are also used to exemplify and demonstrate the viability of the method.

License

Bibliography

Artificial Intelligence for Engineering Design, Analysis and Manufacturing (2011), 25, 185–195.

Rating

Download