Open Innovation Accelerators analysis: applicability in the Mass Customisation context

Luca Canetta¹, Alina Florinita Pitu²

¹ University of Applied Sciences of Southern Switzerland (SUPSI), ICIMSI, Via Cantonale - Galleria 2, CH-6928 Manno (CH), luca.canetta@supsi.ch

² Student of the “Master of Science in Management, Economics and Industrial Engineering”, academic year 2009/2010, Polytechnic of Milan, alinapitu2000@yahoo.com

Abstract

Mass Customisation and Open Innovation are two emerging paradigms. Mass Customisation implies high level of variety and thus creativity, stronger and anticipated interactions with the final customers/users as well as an augmented recourse to co-creation and co-design. All these activities ask for fast pace of innovation and a stronger involvement of many different actors, especially the customers, to the innovation process. Thus, it can be expected that the adoption of Open Innovation can be highly beneficial in the Mass Customisation context. An analysis framework has been designed and applied to 35 Open Innovation Accelerators in order to identify trends and best practices to be applied for designing an effective Open Innovation platform for Mass Customisation. In particular, have been investigated the provided contents and services as well as the adopted organisational forms.

Keywords

Open Innovation, Mass Customisation, best practices, services

1 Introduction

This work is part of an overall approach aimed at fostering successful Mass Customisation (MC) adoption by companies, thus it starts from the premise that some methodologies and tools developed in the framework of Open Innovation (OI) can be effectively used in MC context. Two potential utilisations can be depicted. The first targets the whole number of companies interested in MC that can find a place where discussing about specific issues with like-minded people and capitalise upon the experience and competence of experts, mainly coming from the academic world due to the fact that MC theory and supporting methodologies/tools are still under development. The second implies the interactions between a company offering Mass Customised products/services and its customers, a stronger and continuous interaction with customers is required due to the recourse to co-design and customer-driven innovation. In this work the analysis is conducted mainly taking the first perspective, nevertheless the bulk of the results and analysis can be easily applied also taking the second perspective. Thus, the structure, contents and services provided by Open Innovation Accelerators (OIA) [Diener and Piller 2010] are analysed in order to identify the functionalities and services that can be suitably applied for supporting a wider adoption of Mass Customisation (MC). In order to better describe the aims and the context in which the OIA analysis and classification have been performed a brief description of MC concept is provided- Furthermore, the list of the MC key success factors to be considered is described, these are identified through a detailed literature analysis and integrating in a new overall framework the previous partial contributions. Section 3 is dedicated to the analysis of the OIAs. The framework used for the analysis and the criteria applied for selecting the “most interesting” OIAs is outlined. Accordingly, the results of the analysis are presented, with a specific attention given to the services offered. The conclusions (Section 5) integrates these results into a preliminary description of the proposed Open Innovation Platform for Mass Customisation.
2 Mass Customisation

MC is gaining importance both at the theoretical and at the practical level. However, this concept is still not mature as proven by the multitude of definitions that can be found in the literature, some of them are summarised and commented in [Pitu 2010]. All these definitions, despite starting from a common idea of the basis of MC, underline only some of the aspect of the phenomenon. The following definition of Frank Piller [Piller 2005] has been chosen:

"Customer co-design process of products and services, which meet the needs of each individual customer with regard to certain product features. All operations are performed within a fixed solution space, characterized by stable but still flexible and responsive processes. As a result, the costs associated with customization allow for a price level that does not imply a switch in an upper market segment."

From this definition the challenges related to MC appear clearly. Thus, the necessity for a company to cope with individualised needs to be fitted into a fixed/stable solution space as well as to ensure a proper interaction between customers and producers during the co-design process. From the supply chain side, the need for new flexible and responsive processes capable to deal with the increased finished product variability ensuring the required level of efficiency and effectiveness. Efficiency improvement is required in order to remaining in the current market segment and thus dealing with a price constraint. Effectiveness excellence, both in terms of finished product characteristics and customer delivery lead time, is crucial for satisfying customers’ requirements. In order to deal with these challenges a series of MC key success factors has to be identified. A classification of the success factors is provided in this work on the basis of a literature review, this classification is meant to facilitate the establishment of a suitable MC strategy.

The diversity found in the analysed literature concerning MC definitions is also reflected in the list of key success factors underlined in the already existing MC framework. The taxonomy we propose is obtained by expanding the scope of the single frameworks already cited in the literature and by providing new definitions for the various success factors, in order to harmonize the results of the research conducted during the last decades. A detailed analysis of the frameworks found in the literature and of the various key success factors is beyond the scope of this work and can be found in [Pitu 2010].

<table>
<thead>
<tr>
<th>Internal Factors</th>
<th>Dual/ Transitional Factors</th>
<th>Market related (External) Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Organisation and management</td>
<td>1. ICT</td>
<td>1. Customer involvement</td>
</tr>
<tr>
<td>2. Product development factors</td>
<td>- Knowledge and innovation capabilities</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Products customizability</td>
<td>2. Value chain integration</td>
</tr>
<tr>
<td></td>
<td>- Modularity in design</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Postponement: Anticipation and Flexibility trade-off</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Technology availability</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1: Mass Customisation key success factors

Ten success factors have been identified and classified into three categories (see figure 1) in order to depict the relevant involved actors in MC and their relationships. The External Factors are mainly related to the market environment that can be described focusing on:
• **Customer involvement** and requirements in terms of customisation. This factor includes the direct influence of the customers in favouring or hindering the adoption of MC, among them aspects can be cited: access to sticky information and generation of customer knowledge [Piller et al. 2004]; customer integration into the design process [Moser 2007]; customer sensibility to customisation, willingness to pay and to wait for obtaining more customisation [Hart 1995]

• **Market environment** describes how the various market forces influence the basic nature of an industry; this factor thus takes an aggregated view in which the final outcome is less influenced by a single organization and their customers. For instance, Market Turbulence [Pine 1993] provides a list of factors linked to the overall market environment, such as buyer power, vulnerability to substitute products, product life cycle length, rate of product technology change.

Internal Factors describe the critical influence of decisions, competences and resources of an organisation adopting MC. They can be divided into two classes:

• **Organisation and Management**: the challenges to be overcome and the modifications to be introduced require the strong commitment and support from top and middle management. The internal organisation and the leadership style have also a strong influence on the capability of companies to build sustainable competitive advantage in a fast changeable market capitalising upon MC.

• **Product development** factors encompass all product and process decisions that ensure a successful application of MC. These factors retained a great attention from researchers and practitioners and have been further decomposed in subcategories:
 o **Knowledge and innovation**: internal core competences allowing a company to build a strong competitive advantage through the development of products that satisfy customer requirements. Suitable policies for knowledge creation and sharing have to be developed in order to raise the level of competence of the workforce and their willingness to actively participate to the innovation process. These aspects are fundamental for companies involved into MC because they support their innovation capability and by consequence the probability to introduce successful mass customised product at a high frequency.
 o **Level of customizability** describes the type and degree of customisation that can be obtained working on the product variety. This level is company specific and it is influenced by the internal decisions and capabilities as well as by the pressures due to the market requirement and by the competitors’ strategy. This aspect has been extensively treated in the literature, for more information see for instance [Pitu 2010] and [Da Silveira et al. 2001].
 o **Modularity in design**: is as a key enabler of MC, allowing to reach a high variety of finished product by combining downstream in the production process a limited number of modules, each of them being available in various versions [Duray 2000] [Anderson 2004].
 o **Postponement** is another important factor that simultaneously influences customer requirements satisfaction (in terms of delivery lead-time and service level) and company efficiency. The choice of a suitable position of the decoupling point(s) results from the trade-off between anticipation and flexibility in manufacturing and assembly [Verganti 1999] [Piller and Kumar 2006]. Postponement is made possible by the adoption of modular design and by the establishment of the required competences, obtained through system learning, teamwork and enhanced communication.
The availability of suitable Technology can be fundamental in order to adopt MC. In fact, new technologies are required for using the modular design and for introducing postponement. For companies thinking to adopt MC the level of accessibility, acceptance and willingness of specific technologies have to be carefully assessed. The advantages provided by advanced manufacturing technologies are for instance described by [Krarand Gill 2003], [Broekhuizen and Alsem 2002] and [Da Silveira et al. 2001] that specifically underline the importance of flexibility.

Successful MC implementation implies the involvement of a multitude of actors, from the “prosumer” [Pisano and Verganti 2008] to the various Supply Chain players, and the alignment of each specific company strategy to the overall Supply Chain strategy and to the requirements stemming from the market. The Dual/Transitional factors, facilitating the interaction with the customer and the alignment of the objectives and the decisions of all the involved actors, thus assume a great importance.

- **Standard and specific ICT** deployment is fundamental for ensure customer involvement in the co-design process. The establishment of the customer-manufacturer communication link comprises various steps and requires various sophisticated two-ways communication tools that foster the integration of the customer and facilitate the use of the collected information in order to develop a suitable solution space [Da Silveira et al. 2001]. In parallel specific ICT tools have to be developed for easily translating customer choices into product design features and manufacturing instructions, thanks to the integration of these tools with CAD and CAM software. Concurrently, realistic 3-dimension visualisation tools have to be employed to show to the customer the final results of the choices he made, another time the integration with CAD software can enhance the quality and the efficiency of such visualizers. ICT is also important in increasing the integration and collaboration among the various supply chain actors, ensuring a timely and reliable exchange of information.

- **Value Chain Integration**. MC, requiring a great product/service variety coupled to cost containment and rapid and reliable fulfilment/delivery, implies the achievement of high level of efficiency, effectiveness and flexibility. The latter can be obtained only through a strong collaboration of all the value chain actors, achieved through their integration, the alignment of their objectives and procedures, the establishment of new business models as well as of new win-win profit/risk sharing practices.

The Dual/Transitional factors can fully deploy their beneficial effects if they are themselves strongly correlated and they are furthermore aligned with the Internal and External factors. The two categories of Dual/Transitional factors are linked by a reinforcing loop. In fact Value Chain Integration requires Standard and specific ICT and the availability of ICT allows the application of more sophisticated collaboration practices.

From the analysis of the ten success factors is clear as a successful implementation of an MC strategy requires to deeply modify the way in which doing business and to interact with a wide variety of “partners”. To handle these challenges new competences have to be acquired and the recourse to the OI paradigm can facilitate their finding. Moreover, OI methodologies/tools can be used by companies to interact with customers and with their supply chain partners.

3 OIAs analysis and classification framework

Open Innovation can be defined according to [Chesbrough et al, 2006] as “the use of purposive inflows and outflows of knowledge to accelerate internal innovation, and expand the markets for external use of innovation, respectively. [This paradigm] assumes that firms can and should use external ideas as well as internal ideas, and internal and external paths to market, as they look to advance their technology”. Aiming at developing a platform devoted to companies willing to
introduce MC and supporting them into the acquisition of the relevant knowledge/competences and the definition of a suitable strategy, the target communities are the company interested to MC and all the potential content/service provider. In the specific context of MC academic experts play an important role as content/service provider.

Adopting the perspective of [Diener and Piller 2010] the analysis focuses on the companies/organisations that offer open innovation services acting as intermediaries between a specific company and the external actors, following their definition the “OIA (Open Innovation Accelerators) are intermediaries that operate on the behalf of companies seeking to innovate in cooperation with external actors from the periphery. OIAs offer one or several methods of open innovation and, partly, supporting complementary services for the innovation process” [Diener and Piller 2010].

In order to provide a brief overview of the applicability of OI in the context of MC in this paragraph we take the perspective of a single company interested to deploy OI methodologies/tools for interacting with their customers and supply chain partners. Here the application context is modified because the attention is focused on a subset of the external inflows, those involving the customers. Customers can be involved through: organisation of lead user workshops, deployment of toolkits for open innovation, organisation of innovation contests and creation/management of communities for open innovation. The toolkits for open innovations, class of platforms analysed in this work, create a favourable breeding environment that allows the successful deployment of the other three. In fact, the creation and development of communities for open innovation as well as the organisation of innovation contests are made possible by the availability of a platform fostering the interactions among the customers and the companies.

The success of an OIA is primarily related to the number of participants and their level of participation (access and sharing of formalised and informal information, participation to forum and innovation contests, etc.). For this reason data about the number of users and their activity have been collected and presented in this work. The objective of ensuring a high level of participation, thus providing a strong utility to a wide range of users, also guides the analysis of the OIAs and the definition of the aspects to be considered. The analysis starts from the collection of general information as well as organisational and architectural aspects. Then, the analysis focus on the contents and service provided. In this way an overview of the potential OIAs success factors can be derived; these elements can then been incorporated during the development of the proposed OI platform for MC. A summary of the characteristics considered for OIAs analysis is contained in Figure 2.

The attention to the organisational aspects is justified by the fact that many companies are not yet familiar with MC concept and tools. Thus, at least in the first phase, academic institutions and theoretical experts are expected to play an important role also in the development and management of the OI platform for MC. This explains why, during the analysis, are also
included platforms initiated and promoted by academics, due to the potential similarities with the situations to be faced by the OI platform for MC. More than 50 OIAs have been analysed on the basis of desk research, the majority of the information is directly gathered from the OIAs website, the analysis is not limited to the static public information but also includes utilisation of the service and prior registration processes. When necessary, secondary data sources have also been used for complementing the OIAs characterisation. Only 35 OIAs have been retained for complete description and classification, the results shown on this work are based on this subset. The others were removed due to their scarce relevance (insufficient stage of development, insignificant number of users and/or level of activity, lack of content updating, etc.) and/or lack of available data about their strategy, contents, services.

3.1 OIAs “demographics”

Some general data (initiators: private company vs. governmental/non profit organisation, year of creation, number of participants, geographic scope and “location”) about each the OIA are collected to gather a first snapshot of the overall phenomenon as well as to elicit potential trends and best practices. The ever increasing interest for OI is demonstrated by the high percentage (48.6%) of OIAs created after 2007. About two-thirds (68.5%) of the platforms are managed by private companies while the others are governmental or managed by non profit organisation. The dominance by private companies, due to the creation of many commercial OIAs in recent years, confirms the market interest for OI, fostered by the encouraging results in terms of profitability of some first-movers. Reliable data about the number of users are hard to collect and were available for only 25 of the 35 analysed OIAs. The results show as extremely big players, such as Digg that counts more than 4 million of users, cohabit with smaller one (43% of the OIAs have less than 10000 users). OIAs are concentrated in Europe and North America, however this approach is recently spreading all over the world as demonstrated by the 14% of OIAs belonging to Australia, India and South Africa. A summary of all these demographic characterisation of the OIAs can be found in figure 3.

Figure 3: OIAs characterisation

What is interesting to notice in relation with the expected application context is that Europe is a favourable “market” for the OI platform for MC as well as that this is also the right time for proposing such platform due to the increasing interest. The existence of many successful small OIAs as well as of non-profit initiated OIAs confirm that is possible develop in an incremental
way a OI platform for a “niche market” mainly relying upon academic initiators, this is exactly the case of the OI platform for MC.

3.2 Participants’ implication

Participants’ implication as well as completeness and wealth of details of the provided information are investigated to understand which is the importance of those dimension in the success of an OI platform. Three categories, in increasing order of completeness are specified:

Blog is the simplest type of website that expresses usually someone’s thoughts. It is used mainly by individuals to make public their ideas through texts, images, videos etc. The content is not structured in a complex way and there are only limited interaction possibilities for the users. Sometimes, it is not even possible to leave comments or add additional information/documents.

Website is designed as a dynamic website, relying upon a structured presentation of rich contents. Furthermore, various “standard” tools (e.g. forum, wiki, chat, etc) are available to users for interacting each other. The higher sophistication is explained by the professional use of these tools done by companies and organisations. Nevertheless, the level of participation/interactions of the users can further be enhanced.

Open Platform represents the most sophisticated, complete and open solution. The standard Website tools are complemented with specific toolkits for collaboration, networking and management of innovation contests. Many contents are available to the users through the use a big variety of media (scientific articles, white papers, presentation, images, podcasts, videos, etc.). The users can easily contribute by providing additional materials and/or by updating the existing contents.

The dominant model among the analysed OIAs is the most complete one, **Open Platform**, which accounts for 66% of the OIAs (see Figure 3 left-down corner). The **Blog** is used only by 4 organisations, demonstrating how a successful implementation of OI requires a strong interaction among all the participants as well as a complete and well-structured knowledge base. Thus, even in case of an incremental development the design of the OI platform for MC has to provide high levels of participants’ implication and of completeness and wealth of details of the provided information.

3.3 Collaboration type

The collaboration type is analysed following the two-dimensional classification proposed by [Pisano and Verganti 2008] that takes into account the governance type (hierarchical vs. flat) and participation (closed vs. open). The dominant governance model is Hierarchical (94%) and users active participation is fostered using Open access (75%). As a result (see figure 4), the Open Hierarchical collaboration type, called “Innovation Mall” (one company posts a problem, everyone can propose solutions and the company posting the problem chooses the solution it likes the most), is the most frequently adopted (69%). Follows the Closed Hierarchical approach, called “Elite Circle” (one company selects the participants, defines the problems and chooses the solutions), with 25%. The Innovation Community (anybody can propose problems, offer solutions and decide which solution to use), Open and Flat collaboration type, is currently adopted only by a small minority of platform (6%). Thus, at this stage of development the role of an intermediary is fundamental for ensuring successful collaboration, in parallel looking at the level of participation few restrictions are imposed, mainly based on the level of competences and localisation of the potential solution providers. In certain contexts, MC is one of them [Canetta et al. 2011], participation can be strongly influenced by the level of trustworthiness. This can explain why in 25% of case the OIAs apply a Closed participation form, where users has to register and provide information about them.
3.4 Provided Services

Seven categories of services can be offered by the OIAs in order to improve their utility for the users:

Research and Dissemination: theoretical foundations and technical/practical aspects are covered thanks to the contributions of well reputed experts belonging to different backgrounds (professors, technical specialists, researchers, first movers, etc.). Furthermore, qualitative and quantitative data about overall impacts are provided and analysed. This service mainly characterises OIAs supported by governmental/non profit organisations, but it also offered by private OIAs, especially if initiated in collaboration with universities or well-known scholars.

Consultancy: services about OI strategy development and implementation are provided. Tailored solutions are developed on the basis of the requirements of specific companies. The proposed solution is focused on harnessing the benefit of implementing open collaboration within the company boundaries but also targeting its customers, suppliers and partners.

Open Innovation Software: platforms facilitating the interaction among the users and the information exchange are developed, hosted and managed by some OIAs. These platforms provide favourable on-line environment facilitating the establishment of trusted relationships finalised to collaborative innovation. Various standard and specialised tools can be implemented in these platforms.

Innovation Contests: allow seekers to describe specific problems, making a public announcement about the objectives to be fulfilled and the problems to be solved, and look for solutions from a huge and diversified audience. This requires the development of suitable idea management software that manage the various steps from the problem definition to the identification and reward of the contest winner(s).

Seekers and solution providers matching: in order to facilitate successful collaboration the selection of the right partners can be crucial. Some OIAs exploit their knowledge for creating a list of trustfully solution providers, including their competences and their past experiences. The use of such database allows the OIAs to address each specific request of the seekers to the solution providers that have potentially the high probability of providing a suitable solution. The matching can be done on various criteria: previous experiences with similar problems, outstanding competences in a specific area, high rate of proposed successful solutions, short delay from the posting of the problem to provide a solution, etc.

Event Organization and Training: various types of events are organised by OIAs, these include general purpose conferences and meetings as well as workshops devoted to the identification of the opinion of the lead users. In parallel, training courses are organised to: helping companies to implement OI strategy, fostering collaboration among the involved people, explaining people their roles and the approaches to be followed for obtaining the best results. The main purpose of these services is bringing together people interested in OI and ensuring knowledge and competence sharing about successful management of the innovation process.
Funds and Sponsorships: this service characterises governmental institutions aiming at fostering society and nation/region wealth through innovation projects and the direct economic sustain to the innovation efforts of companies and entrepreneurs.

Each OIA provides various services (see figure 5), the one offered more frequently (83% of the OIAs) is the provision of consultancy. Other services directly favouring the OI process and frequently proposed by the OIAs are:

- organisation of Innovation Contests (proposed by 60% of OIAs)
- creation of database supporting the matching among the seekers and suitable solution providers (69%)
- development of specific software facilitating the interactions and information sharing among seekers and solution providers (43%).

General services also strongly contribute to OIAs perceived utility:

- in order to foster OI understanding and implementation theoretical foundations and recent improvements are documented and made available to companies (Research and Dissemination: 66%)
- in order to raise the level of participation and the success rate of OI training courses and workshops are organised, these focus on narrow subjects and are designed for satisfying the needs of a specific company, for instance identifying the opinions of lead users. More general events, such as conferences and meeting, are organised to bring people together and create a suitable breeding environment for collaboration and OI (Event Organization and Training: 74%)

In the MC context “Research and Dissemination” as well as “Event Organization and Training” will be the cornerstone for the proposed OI platform. Commercial services, such as “Consultancy”, “Innovation contest” and “Seekers and solution providers matching” will not be targeted at the beginning due to the expected leadership from academics and the non-profit orientation of the OI for MC.

3.5 Provided contents

The abundance, pertinence and effectiveness of information have also a significant influence on the willingness of people to access a platform and register to it. The contents can be classified according to: the level of formalism, abstraction/generalisation, focus, authorship, etc. The choice of the form of contents to be provided is strongly influenced by the targeted communities and by the covered subjects. Thus, it is mainly influenced by the strategy and the scope of each
specific OIAs rather than by some best practice. The interested reader can find more detail about the classification of the types of contents and their relative frequency of use in [Pitu 2010]. Nevertheless, some hints about the contents to be proposed (subjects and types) are cited below. These suggestions stem from the analysis of the selected OIAs as well as of that of the specific context/objectives of the platform to be realised. For instance, general purpose article (white papers, dissemination brochure, working knowledge blog entry, etc.) are proposed by the majority of the OIAs (85%) providing a means for communicate in an easy to understand manner general concepts as well as for fostering discussions and collaborations. To similar objectives contributes another category of contents “Events, News, Interviews and Videos” used by 60% of the organizations in our study to make familiar people with different “actors”, events, meetings (not necessarily organized by the owner of the platform) and which represent good occasions for the interested persons to feel as belonging to a specific community. Links to the researcher/organisation blog (56%) and to other useful resources (50%) usually characterise the OIAs.

In addition to the general contents described above additional material fulfilling the requirements of specific communities can be provided. Case Studies and Reports (47%) underline market best practices and/or successful past projects undertaken with the support of the OIA. They are devoted to the industrial world and designated to help the others to identify and learn from previous similar situations. These contents can be often accessed without a fee because they constitute a marketing tool for the organisation, promoting its services and helping to build trustworthiness.

To a completely different target are addresses Academic Publications and Materials (29%). It is not surprising to detect this type of contents considering that many OIAs have been developed in collaboration with universities and well-reputed academics. These contents summarise the knowledge concerning some subjects (literature reviews, state of the art introduction, etc.) but can also contain embryonic research results, in the latter case the platform favour the creation of new knowledge through the interaction of various experts on novel subjects. This type of content is considered particularly important in the MC contest. In fact, many challenges related to MC application have not been completely overcome yet and fostering collaboration among academics and between academics and people from industry is one of the priorities of the platform.

4 Conclusions

The OIAs analysis provides several interesting food for thought for guiding the development of an OI platform for MC, which will be devoted to support companies interested in MC for acquiring the required knowledge/competences and for finding the right partners for deploying an effective MC strategy. The fundamental role played by the intermediary is underlined by the strong recourse to hierarchical governance. In the context of the OI for MC, at least in a preliminary phase, non-profit intermediaries/initiators, such as universities and associations, will take the lead. It is thus important that the academics will significantly take into accounts the requirements of the people from industry, which will be the bulk of the potential users. Another mandatory factor for ensuring the platform success is the involvement of users, demonstrated from an organisation point of view by the wide recourse to Flat participation as well as looking at participants’ implication by the choice of implementing the Open Platform model, which outperforms Blog and Website. The recourse to the Open Platform model also underlines the importance of providing abundant and well-structured contents for all the targeted communities. This implies to develop a diversified offer where mainly practical case studies are provided to industrial users while academics mainly access theoretical articles. These aspects are particularly important in the context of MC, where the scientific community is extremely active in proposing and confronting the approaches to be followed for introducing MC in various industrial sectors, while the potential commercial adopters have to be motivated to embrace MC through the
description of successful case studies and operational best practices. The OIAs analysis shed the light also on the services to be provided. This will constitute an important input in order to plan an incremental strategy for the OI platform for MC to be developed, in which some services (Event Organization and Training, Research and Dissemination, Consultancy) have to be provided from the beginning in order to ensure to reach a considerable number of active users while others (Open Innovation Software, Innovation Contests, Seekers and solution providers matching) can be introduced in a second time according to the stage of development of the OIA.

Acknowledgement
The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° NMP2-SL-2009-229333. The authors wish to acknowledge the Commission for their support. We also wish to acknowledge our gratitude and appreciation to all the REMPLANET project partners for their contribution during the development of various ideas and concepts presented in this paper.

References

